Universo Profondo in 3D: dalle Osservazioni di Hubble alla Ricostruzione di MUSE

Postato il 1 marzo 2015 alle 16:17

L'immagine sullo sfondo è il montaggio ripreso dallo Hubble Space Telescope della regione di cielo dello Hubble Deep Field South. Ad essa si aggiungono vari oggetti all'epoca non ripresi, ma visti ora da MUSE. Credit: ESO/MUSE Consortium/R. Bacon
L’immagine sullo sfondo è il montaggio ripreso dallo Hubble Space Telescope della regione di cielo dello Hubble Deep Field South. Ad essa si aggiungono vari oggetti all’epoca non ripresi, ma visti ora da MUSE. Credit: ESO/MUSE Consortium/R. Bacon

La creazione di mappe del profondo cielo è assolutamente vitale per gli studiosi che cercano di comprendere le dinamiche dell’Universo quando esso era ancora molto giovane. Tramite riprese a lunga esposizione di svariate regioni, gli astronomi hanno creato una grande quantità di campi profondi che hanno permesso di svelare gran parte dei suoi segreti: e tra di essi, il più celebre è sicuramente l’ Hubble Deep Field, ripreso in varie giornate dallo Hubble Space Telescope nel 1995, e seguito due anni più tardi da un’analoga ripresa dell’emisfero celeste australe, l’o Hubble Deep Field South.

Mappa mostrante la regione di cielo deominata Hubble Deep Field South, nella costellazione del Tucano. Credit: ESO, IAU and Sky & Telescope
Mappa che mostra la regione di cielo denominata Hubble Deep Field South, nella costellazione del Tucano. Credit: ESO, IAU and Sky & Telescope

Nonostante queste spettacolari immagini abbiano permesso di aumentare la nostra conoscenza su ciò che l’Universo conteneva in tempi remoti, esse non hanno dato risposta a diversi quesiti e, specialmente per le galassie, gli studiosi sono stati costretti ad analizzarle una per una con altri strumenti, un lavoro molto dispendioso soprattutto in termini di tempo. Ebbene, a questo proposito MUSE, strumento montato sul Very Large Telesope dell’ESO, è in grado di fornirci SIA un ottima ripresa del cielo profondo SIA le informazioni mancanti sui vari oggetti che compaiono. E in un tempo di gran lunga minore!

Il risultato di una delle prime osservazioni effettuate tramite MUSE, che ha osservato la stessa regione di cielo ripresa nell’Hubble Deep Field South (HDF-S), è andata oltre le aspettative: la ripresa è durata solo poche ore, ma ha portato ad una quantità di dati davvero importante.

In questa ripresa di MUSE sono segnati i vari oggetti la cui distanza è stata in seguito calcolata. Le stelle bianche indicano deboli stelle della Via Lattea, tutti gli altri simboli segnano galassie distanti. I cerchi indicano oggetti visti da Hubble, i triangoli oggetti scoperti da MUSE: in blu oggetti relativamente vicini; in verde e giallo, più distanti; in bianco e rosa, le galassie presenti quando l'Universo aveva meno di un miliardo di anni. Credit: ESO/MUSE consortium/R. Bacon
In questa ripresa di MUSE sono contrassegnati i vari oggetti di cui inseguito si è calcolata la distanza. Le stelle bianche indicano deboli stelle della Via Lattea, tutti gli altri simboli segnano galassie distanti. I cerchi indicano oggetti visti da Hubble, i triangoli sono oggetti scoperti da MUSE: in blu oggetti relativamente vicini; in verde e giallo quelli più distanti; in bianco e rosa le galassie presenti quando l’Universo aveva meno di un miliardo di anni. Credit: ESO/MUSE consortium/R. Bacon

L’immagine data da MUSE, infatti, non è soltanto formata da un insieme di pixel, ma anche da uno spettro che rivela l’intensità dei diversi colori che compongono la luce in quel punto, per un totale di circa 90 000 spettri. Tutto ciò può rivelare distanza, composizione e moti interni a centinaia di galassie lontane, oltre ad un cospicuo numero di debolissime stelle appartenenti alla Via Lattea stessa.

Oltre ad aver misurato accuratamente la distanza di 189 galassie (oltre dieci volte la quantità di misurazioni possibili in precedenza), sono stati registrati più di venti oggetti debolissimi, che nelle riprese effettuate da Hubble non compaiono nemmeno.

Per le galassie più vicine, invece, è possibile ora dare un’occhiata approfondita alle varie regioni, permettendo di capirne la rotazione e la variazione delle sue proprietà da zona a zona, e dunque di poter osservare l’evoluzione di questi straordinari agglomerati di stelle.

Giulia Murtas

Super Ripresa per una Super Cometa: C/2014 Q2 Lovejoy Immortalata dalla Dark Energy Camera


Postato il 1 marzo 2015 alle 17:09

Ripresa della cometa C/2014 Q2 Lovejoy da parte della Dark Energy Camera (DECam). Credit: Fermilab – Marty Murphy, Nikolay Kuropatkin, Huan Lin e Brian Yanny
Ripresa della cometa C/2014 Q2 Lovejoy da parte della Dark Energy Camera (DECam). Credit: Fermilab – Marty Murphy, Nikolay Kuropatkin, Huan Lin e Brian Yanny

Cosa succede quando prendi una cometa, oggetto strabiliante e luminoso, e decidi di fotografarla con la macchina fotografica digitale più potente al mondo? Ecco qual è stato il risultato ottenuto dalla Dark Energy Camera nella ripresa della cometa C/2014 Q2 Lovejoy che ha solcato lo spazio in prossimità della Terra tra la fine dello scorso anno e l’inizio del 2015.

La Dark Energy Camera (DECam) in realtà è una fotocamera, installata sul telescopio Blanco sul Cerro Tololo in Cile, che con i suoi 570 Megapixel di risoluzione complessiva è stata costruita in modo da risultare particolarmente sensibile alla luce tendente al rosso di stelle e galassie lontane, ed è a campo talmente grande (2,2 gradi) che con una sola immagine può ottenere informazioni da una regione di cielo venti volte più grande della dimesione apparente della Luna, per come la vediamo dalla Terra. È costituita da cinque lenti che permettono la correzione di varie aberrazioni ottiche, la più grande tra le quali ha circa un metro di diametro, e viene principalmente impiegata nello studio e nella ricerca dell’energia oscura.

DECam. Credit: Fermilab
DECam. Credit: Fermilab

Perciò, al passaggio della cometa il 27 dicembre 2014 ad una distanza di 82 milioni di chilometri dalla Terra (una bazzecola rispetto alle distanze a cui è utilizzato lo strumento), DECam ha ottenuto un effetto spettacolare: questa immagine è un montaggio di alcuni dei 62 singoli campi di cui è dotata la camera, e mostra bene il nucleo della cometa di circa 5 km di diametro e di una parte della chioma che si estende per oltre 600 000 km.

Giulia Murtas

An Old-looking Galaxy in a Young Universe

eso1508-en-gb — Science Release

ALMA and VLT probe surprisingly dusty and evolved galaxy

2 March 2015

One of the most distant galaxies ever observed has provided astronomers with the first detection of dust in such a remote star-forming system and tantalising evidence for the rapid evolution of galaxies after the Big Bang. The new observations have used ALMA to pick up the faint glow from cold dust in the galaxy A1689-zD1 and used ESO’s Very Large Telescope to measure its distance.

A team of astronomers, led by Darach Watson from the University of Copenhagen, used the Very Large Telescope’s X-shooter instrument along with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe one of the youngest and most remote galaxies ever found. They were surprised to discover a far more evolved system than expected. It had a fraction of dust similar to a very mature galaxy, such as the Milky Way. Such dust is vital to life, because it helps form planets, complex molecules and normal stars.

The target of their observations is called A1689-zD1 [1]. It is observable only by virtue of its brightness being amplified more than nine times by a gravitational lens in the form of the spectacular galaxy cluster, Abell 1689, which lies between the young galaxy and the Earth. Without the gravitational boost, the glow from this very faint galaxy would have been too weak to detect.

We are seeing A1689-zD1 when the Universe was only about 700 million years old — five percent of its present age [2]. It is a relatively modest system — much less massive and luminous than many other objects that have been studied before at this stage in the early Universe and hence a more typical example of a galaxy at that time.

A1689-zD1 is being observed as it was during the period of reionisation, when the earliest stars brought with them a cosmic dawn, illuminating for the first time an immense and transparent Universe and ending the extended stagnation of the Dark Ages. Expected to look like a newly formed system, the galaxy surprised the observers with its rich chemical complexity and abundance of interstellar dust.

After confirming the galaxy’s distance using the VLT,” said Darach Watson, “we realised it had previously been observed with ALMA. We didn’t expect to find much, but I can tell you we were all quite excited when we realised that not only had ALMA observed it, but that there was a clear detection. One of the main goals of the ALMA Observatory was to find galaxies in the early Universe from their cold gas and dust emissions — and here we had it!

This galaxy was a cosmic infant — but it proved to be precocious. At this age it would be expected to display a lack of heavier chemical elements — anything heavier than hydrogen and helium, defined in astronomy as metals. These are produced in the bellies of stars and scattered far and wide once the stars explode or otherwise perish. This process needs to be repeated for many stellar generations to produce a significant abundance of the heavier elements such as carbon, oxygen and nitrogen.

Surprisingly, the galaxy A1689-zD1 seemed to be emitting a lot of radiation in the far infrared [3], indicating that it had already produced many of its stars and significant quantities of metals, and revealed that it not only contained dust, but had a dust-to-gas ratio that was similar to that of  much more mature galaxies.

Although the exact origin of galactic dust remains obscure,” explains Darach Watson, “our findings indicate that its production occurs very rapidly, within only 500 million years of the beginning of star formation in the Universe — a very short cosmological time frame, given that most stars live for billions of years.”

The findings suggest A1689-zD1 to have been consistently forming stars at a moderate rate since 560 million years after the Big Bang, or else to have passed through its period of extreme starburst very rapidly before entering a declining state of star formation.

Prior to this result, there had been concerns among astronomers that such distant galaxies would not be detectable in this way, but A1689-zD1 was detected using only brief observations with ALMA.

Kirsten Knudsen (Chalmers University of Technology, Sweden), co-author of the paper, added, “This amazingly dusty galaxy seems to have been in a rush to make its first generations of stars. In the future, ALMA will be able to help us to find more galaxies like this, and learn just what makes them so keen to grow up.”

Notes

[1] This galaxy was noticed earlier in the Hubble images, and suspected to be very distant, but the distance could not be confirmed at that time.

[2] This corresponds to a redshift of 7.5.

[3] This radiation is stretched by the expansion of the Universe into the millimetre wavelength range by the time it gets to Earth and hence can be detected with ALMA.

More information

This research was presented in a paper entitled “A dusty, normal galaxy in the epoch of reionization” by D. Watson et al., to appear online in the journal Nature on 2 March 2015.

The team is composed of D. Watson (Niels Bohr Institute, University of Copenhagen, Denmark), L. Christensen (University of Copenhagen), K. K. Knudsen (Chalmers University of Technology, Sweden), J. Richard (CRAL, Observatoire de Lyon, Saint Genis Laval, France), A. Gallazzi (INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy) and M. J. Michalowski (SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, UK).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

Links

Contacts

Darach Watson
Niels Bohr Institute
University of Copenhagen, Denmark
Tel: +45 2480 3825
Email: darach@dark-cosmology.dk

Kirsten K. Knudsen
Chalmers University of Technology
Onsala, Sweden
Tel: +46 31 772 5526
Cell: +46 709 750 956
Email: kirsten.knudsen@chalmers.se

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel: +49 89 3200 6655
Cell: +49 151 1537 3591
Email: rhook@eso.org

Connect with ESO on social media

This is a translation of ESO Press Release eso1508.

Uma galáxia aparentemente velha num Universo jovem

eso1508pt-br — Nota de imprensa científica

O ALMA e o VLT observam uma galáxia surpreendentemente evoluída e empoeirada

2 de Março de 2015

Uma das galáxias mais distantes observada até hoje deu aos astrônomos a primeira detecção de poeira num sistema com formação estelar muito longínquo, o que aponta para uma rápida evolução das galáxias depois do Big Bang. Nas novas observações utilizou-se o ALMA para capturar o fraco brilho da poeira fria na galáxia A1689-zD1 e o Very Large Telescope do ESO para medir a distância a este objeto.

Uma equipe de astrônomos, liderada por Darach Watson, da Universidade de Copenhagen, utilizou o instrumento X-shooter montado no Very  Large Telescope, assim como o Atacama Large Millimeter/submillimeter Array (ALMA) para observar uma das galáxias mais jovens e mais longínquas já encontradas. A equipe surpreendeu-se ao descobrir um sistema muito mais evoluído do que o esperado, com uma fração de poeira muito semelhante à de uma galáxia madura, como a Via Láctea. Tal poeira é vital à vida, contribuindo para a formação de planetas, moléculas complexas e estrelas normais.

O alvo das observações da equipe chama-se A1689-zD1 [1], uma galáxia observável apenas devido ao fato do seu brilho ser amplificado mais de nove vezes por uma lente gravitacional, provocada um aglomerdo de galáxias, Abell 1689, o qual se situa entre a jovem galáxia e a Terra. Sem este aumento gravitacional, o brilho desta galáxia muito tênue seria demasiado fraco para se poder detectar.

Vemos A1689-zD1 quando o Universo tinha apenas cerca de 700 milhões de anos – ou seja 5% da sua idade atual [2]. É um sistema relativamente modesto – muito menos massivo e luminoso do que muitos outros objetos que foram anteriormente estudados nesta fase do Universo primordial e portanto uma galáxia mais típica dessa época.

A1689-zD1 está sendo observada tal como era no período da reionização, altura em que as primeiras estrelas trouxeram uma madrugada cósmica, iluminando pela primeira vez um Universo imenso e transparente e acabando com o extenso período de estagnação chamado Idade das Trevas. Esperava-se que a galáxia se parecesse com um sistema recém formado, mas afinal os observadores ficaram surpreendidos ao descobrir uma rica complexidade química e abundância de poeira interestelar.

Depois de confirmada a distância à galáxia com o auxílio do VLT”, disse Darach Watson, “percebemos que este objeto já tinha sido observado anteriormente pelo ALMA. Não esperávamos encontrar grande coisa, mas posso dizer que ficamos todos muito entusiasmados quando percebemos que não só o ALMA já a tinha observado, como se tratava de uma detecção muito clara. Um dos objetivos principais do Observatório ALMA era encontrar galáxias no Universo primordial através das suas emissões de gás frio e poeira – e aqui está”.

Esta galáxia é um bebê cósmico – mas que provou ser precoce. Com esta idade esperar-se-ia que apresentasse uma falta de elementos químicos mais pesados – qualquer elemento mais pesado que o hidrogênio ou o hélio define-se em astronomia como metal. Estes elementos são produzidos no interior das estrelas e espalhados por toda a parte quando as estrelas explodem ou morrem de qualquer forma. Este processo tem que se repetir por muitas gerações estelares para produzir uma abundância significativa de elementos pesados, tais como o carbono, oxigênio ou nitrogênio.

Surpreendentemente, a galáxia A1689-zD1 parecia emitir imensa radiação no infravermelho longínquo [3], indicando assim que já tinha produzido muitas das suas estrelas e quantidades significativas de metais, revelando que não só continha poeira, mas também possuía uma razão poeira-gás semelhante à de galáxias muito mais maduras.

Embora a origem exata da poeira galáctica permaneça obscura,” explica Darach Watson, ”a nossa descoberta indica que a sua produção ocorre muito rapidamente, num período de apenas 500 milhões de anos desde o início da formação estelar no Universo – um intervalo de tempo muito curto em termos cosmológicos, já que a maioria das estrelas vivem durante bilhões de anos”.

Os resultados sugerem que A1689-zD1 tem formado estrelas de modo consistente a uma taxa moderada desde uma altura de cerca de 560 milhões de anos depois do Big Bang, ou alternativamente passou por um período extremo muito rápido de formação estelar explosiva antes de iniciar a fase de declínio da formação estelar.

Antes deste resultado, havia a preocupação de que tais galáxias longínquas poderiam não ser detectadas, no entanto A1689-zD1 foi detectada usando apenas observações breves do ALMA.

Kirsten Knudsen (Universidade Chalmers de Tecnologia, Suécia), co-autor do artigo científico que descreve estes resultados, acrescenta ”Esta extraordinária galáxia empoeirada parece ter tido muita pressa em formar as suas primeiras gerações de estrelas. No futuro, o ALMA será capaz de nos ajudar a encontrar mais galáxias como esta, de modo a que possamos perceber o que é que as leva a querer “crescer” tão depressa.

Notas

[1] Esta galáxia foi observada anteriormente em imagens Hubble, suspeitando-se que seria muito distante, no entanto na altura não se conseguiu medir de modo preciso a sua distância.

[2] O que corresponde a um desvio para o vermelho de 7,5.

[3] Esta radiação é “esticada” devido à expansão do Universo, aparecendo na região dos comprimentos de onda milimétricos quando chega à Terra e podendo, por isso, ser detectada com o ALMA.

Mais Informações

Este trabalho foi descrito no artigo científico intitulado “A dusty, normal galaxy in the epoch of reionization” de D. Watson et al., que será publicado online na revista Nature a 2 de março de 2015.

A equipe é composta por D. Watson (Instituto Niels Bohr, Universidade de Copenhagen, Dinamarca), L. Christensen (Universidade de Copenhagen), K. K. Knudsen (Universidade Chalmers de Tecnologia, Suécia), J. Richard (CRAL, Observatoire de Lyon, Saint Genis Laval, França), A. Gallazzi (INAF-Osservatorio Astrofisico di Arcetri, Firenze, Itália) e M. J. Michalowski (SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, RU).

O ESO é a mais importante organização europeia intergovernamental para a investigação em astronomia e é de longe o observatório astronômico mais produtivo do mundo. O ESO é  financiado por 16 países: Alemanha, Áustria, Bélgica, Brasil, Dinamarca, Espanha, Finlândia, França, Holanda, Itália, Polônia, Portugal, Reino Unido, República Checa, Suécia e Suíça, assim como pelo Chile, o país de acolhimento. O ESO destaca-se por levar a cabo um programa de trabalhos ambicioso, focado na concepção, construção e operação de observatórios astronômicos terrestres de ponta, que possibilitam aos astrônomos importantes descobertas científicas. O ESO também tem um papel importante na promoção e organização de cooperação na investigação astronômica. O ESO mantém em funcionamento três observatórios de ponta no Chile: La Silla, Paranal e Chajnantor. No Paranal, o ESO opera  o Very Large Telescope, o observatório astronômico óptico mais avançado do mundo e dois telescópios de rastreio. O VISTA, o maior telescópio de rastreio do mundo que trabalha no infravermelho e o VLT Survey Telescope, o maior telescópio concebido exclusivamente para mapear os céus no visível. O ESO é um parceiro principal no ALMA, o maior projeto astronômico que existe atualmente. E no Cerro Armazones, próximo do Paranal, o ESO está a construir o European Extremely Large Telescope (E-ELT) de 39 metros, que será “o maior olho do mundo virado para o céu”.

Links

Contatos

Gustavo Rojas
Universidade Federal de São Carlos
São Carlos, Brazil
Tel.: 551633519795
e-mail: grojas@ufscar.br

Darach Watson
Niels Bohr Institute
University of Copenhagen, Denmark
Tel.: +45 2480 3825
e-mail: darach@dark-cosmology.dk

Kirsten K. Knudsen
Chalmers University of Technology
Onsala, Sweden
Tel.: +46 31 772 5526
Cel.: +46 709 750 956
e-mail: kirsten.knudsen@chalmers.se

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel.: +49 89 3200 6655
Cel.: +49 151 1537 3591
e-mail: rhook@eso.org

Connect with ESO on social media

Este texto é a tradução da Nota de Imprensa do ESO eso1508, cortesia do ESON, uma rede de pessoas nos Países Membros do ESO, que servem como pontos de contato local para a imprensa. O representante brasileiro é Gustavo Rojas, da Universidade Federal de São Carlos. A nota de imprensa foi traduzida por Margarida Serote (Portugal) e adaptada para o português brasileiro por Gustavo Rojas.

Una galaxia envejecida en un joven universo

eso1508es-cl — Comunicado científico

ALMA y VLT estudian una galaxia inesperadamente evolucionada y polvorienta

2 de Marzo de 2015

Una de las galaxias más lejanas jamás observadas proporciona a los astrónomos la primera detección de polvo en un remoto sistema de formación estelar de este tipo, una prometedora evidencia para explicar la rápida evolución de las galaxias después del Big Bang. Para recoger el débil resplandor del polvo frío en la galaxia A1689-zD1, las nuevas observaciones han utilizado el conjunto ALMA; para medir su distancia lo han hecho con el Very Large Telescope de ESO.

Un equipo de astrónomos, liderado por Darach Watson, de la Universidad de Copenhague, ha utilizado el instrumentoX-shooter, instalado en el Very Large Telescope, junto con ALMA (Atacama Large Millimeter/submillimeter Array), para observar una de las galaxias más remota y más joven jamás encontrada. Se sorprendieron al descubrir un sistema mucho más evolucionado de lo esperado, ya que tenía una fracción de polvo similar a una galaxia como la Vía Láctea, mucho más evolucionada. Este polvo es vital para la vida, ya que ayuda en la formación de planetas, moléculas complejas y estrellas normales.

El objeto se llama A1689-zD1 [1]. Podemos verlo gracias a que una lente gravitatoria (en forma de espectacular cúmulo de galaxias – Abell 1689 – que se encuentra entre la joven galaxia y la Tierra) amplifica su brillo más de nueve veces. Sin este fenómeno gravitacional, el resplandor de esta lejana galaxia habría sido demasiado débil para detectarlo.

Estamos viendo a A1689-zD1 cuando el universo tenía sólo unos 700 millones de años (el cinco por ciento de su edad actual [2]). Es un sistema relativamente modesto, mucho menos masivo y luminoso que muchos otros objetos que se han estudiado antes en esta etapa del universo temprano y, por lo tanto, un ejemplo más típico de una galaxia en aquel momento.

A1689-zD1 está siendo observada tal y como era durante el período de reionización, cuando las primeras estrellas trajeron consigo un amanecer cósmico, iluminando por primera vez un inmenso y transparente universo y acabando con el prolongado estancamiento de las épocas oscuras. Los observadores esperaban ver un sistema con apariencia de haberse formado recientemente, pero la galaxia les sorprendió por su rica complejidad química y por su abundancia de polvo interestelar.

Tras confirmar la distancia de la galaxia utilizando el VLT”, afirma Darach Watson, “nos dimos cuenta de que había sido observada previamente con ALMA. No esperábamos encontrar mucho, pero te aseguro que estábamos todos muy emocionados cuando nos dimos cuenta de que ALMA no sólo la había observado, sino que había hecho una clara detección. Uno de los principales objetivos del Observatorio ALMA era encontrar galaxias en el universo temprano a partir de sus emisiones de gas y polvo fríos — ¡y aquí está!“.

Esta galaxia estaba en su infancia cósmica, pero resultó ser precoz. A esta edad, se  supone que debía tener pocos elementos químicos pesados — en astronomía, cualquier elemento más pesado que el hidrógeno o el helio, se define como metal. Estos se producen en el interior de las estrellas y se dispersan y alejan una vez que las estrellas explotan o alcanzan el final de sus vidas de otro modo. Es necesario que este proceso se repita durante muchas generaciones estelares para producir una gran abundancia de los elementos más pesados como el carbono, el oxígeno y el nitrógeno.

Sorprendentemente, la galaxia A1689-zD1 parecía estar emitiendo una gran cantidad de radiación en el infrarrojo lejano[3], indicando que ya había producido muchas de sus estrellas y cantidades significativas de metales, revelando que no sólo contenía polvo sino que tenía una proporción polvo-gas similar a la de galaxias mucho más maduras.

Según explica Darach Watson, “Aunque el origen exacto del polvo galáctico sigue siendo un misterio, nuestros resultados indican que su producción es muy rápida, en un margen de sólo 500 millones años desde el comienzo de la formación de estrellas en el universo. En términos cosmológicos, es un plazo muy corto, dado que la mayoría de las estrellas viven miles de millones de años.”

Los resultados sugieren que A1689-zD1 ha estado formando estrellas uniformemente a un ritmo moderado desde 560 millones de años después del Big Bang, o bien ha pasado de forma muy rápida por su fase de brote estelar (starburst) antes de entrar en una etapa de declive en cuanto a formación de estrellas.

Antes de este resultado, los astrónomos temían que fuera imposible detectar este tipo de galaxias distantes utilizando estas técnicas, pero A1689-zD1 ha sido detectada usando tan sólo breves observaciones llevadas a cabo por ALMA.

Kirsten Knudsen (Universidad Tecnológica de Chalmers, Suecia), coautor del artículo, añadió, “esta galaxia increíblemente polvorienta parece haberse visto en un apuro para hacer sus primeras generaciones de estrellas. En el futuro, ALMA será capaz de ayudarnos a encontrar más galaxias como esta y aprender así por qué están tan ansiosas por crecer“.

Notas

[1] Esta galaxia fue descubierta anteriormente en las imágenes del Hubble y se sospecha que está muy lejos, pero en aquel momento no pudo medirse la distancia con precisión.

[2] Esto se corresponde con un desplazamiento al rojo de 7,5.

[3] Para cuando alcanza la Tierra, y debido a la expansión del universo, esta radiación se ha “estirado”, desplazándose hacia la longitud de onda del rango milimétrico, por lo que es posible detectarla con ALMA.

Información adicional

Este trabajo de investigación se ha presentado en el artículo científico titulado “A dusty, normal galaxy in the epoch of reionization”, por D. Watson et al., y aparece en línea en la revista Nature del 2 de marzo de 2015.

El equipo está formado por: D. Watson (Instituto Niels Bohr, Universidad de Copenhague, Dinamarca); L. Christensen (Universidad de Copenhague); K. K. Knudsen (Universidad Tecnológica de Chalmers, Suecia); J. Richard (CRAL, Observatorio de Lyon, Saint Genis Laval, Francia); A. Gallazzi (INAF-Observatorio Astrofísico de Arcetri, Florencia, Italia) y M. J. Michalowski (SUPA, Instituto de Astronomía, Universidad de Edimburgo, Real Observatorio, Edimburgo, Reino Unido).

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con el respaldo de dieciséis países: Alemania, Austria, Bélgica, Brasil, Dinamarca, España, Finlandia, Francia, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope, el observatorio óptico más avanzado del mundo, y dos telescopios de rastreo. VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía) trabaja en el infrarrojo y es el telescopio de rastreo más grande del mundo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT) es el telescopio más grande diseñado exclusivamente para rastrear el cielo en luz visible. ESO es el socio europeo de un revolucionario telescopio, ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Además, cerca de Paranal, en Cerro Armazones, ESO está construyendo el E-ELT (European Extremely Large Telescope), el telescopio óptico y de infrarrojo cercano de 39 metros que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Las traducciones de las notas de prensa de ESO las llevan a cabo miembros de la Red de Divulgación de la Ciencia de ESO (ESON por sus siglas en inglés), que incluye a expertos en divulgación y comunicadores científicos de todos los países miembros de ESO y de otras naciones.

El nodo español de la red ESON está representado por J. Miguel Mas Hesse y Natalia Ruiz Zelmanovitch.

Enlaces

Contactos

Francisco Rodríguez I.
Observatorio Europeo Austral (ESO)
Santiago, Chile
Tlf.: +56 2 24633019
Correo electrónico: frrodrig@eso.org

Darach Watson
Niels Bohr Institute
University of Copenhagen, Denmark
Tlf.: +45 2480 3825
Correo electrónico: darach@dark-cosmology.dk

Kirsten K. Knudsen
Chalmers University of Technology
Onsala, Sweden
Tlf.: +46 31 772 5526
Celular: +46 709 750 956
Correo electrónico: kirsten.knudsen@chalmers.se

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tlf.: +49 89 3200 6655
Celular: +49 151 1537 3591
Correo electrónico: rhook@eso.org

Connect with ESO on social media

Esta es una traducción de la nota de prensa de ESO eso1508.

Una galassia dall’aspetto vissuto in un Universo giovane

eso1508it — Comunicato Stampa Scientifico

ALMA e VLT indagano una galassia sorprendemente polverosa ed evoluta

02 Marzo 2015

Una delle galassie più distanti mai osservate ha fornito agli astronomi la prima rilevazione di polvere in un sistema di formazione stellare così lontano e la seducente prova della rapida evoluzione delle galassie dopo il Big Bang. Le nuove osservazioni hanno usato ALMA per raccogliere il debole bagliore della polvere fredda nella galassia A1689-zD1 e il VLT dell’ESO per misurarne la distanza.

Un’equipe di astronomi, guidata da Darach Watson, dell’Università di Copenhagen, ha usato lo strumento X-shooter installato sul telescopio VLT (Very Large Telescope), insieme con ALMA (Atacama Large Millimeter/submillimeter Array) per osservare una delle galassie più giovani e più lontane. Si sono sorpresi di scoprire un sistema molto più evoluto del previsto, con una frazione di polvere simile a una galassia molto più matura, come la Via Lattea. Questa polvere è fondamentale per la vita, perchè serve per formare i pianeti, le molecole complesse e le stelle normali.

L’oggetto dell’osservazione è noto come A1689-zD1 [1]. È osservabile solo grazie al fatto che la sua luminosità è amplificata più di nove volte da una lente gravitazionale formata da uno spettacolare ammasso di galassie, Abell 1689, che si trova tra la giovane galassia e la Terra. Senza l’assistenza della forza di gravità, il bagliore di questa galassia molto fioca sarebbe troppo debole per essere visto.

Vediamo A1689-zD1 quando l’Universo aveva solo circa 700 milioni di anni – il cinque per cento della sua età attuale[2]. È un sistema relativamente modesto – molto meno massiccio e luminoso di molti altri oggetti già studiati in questa fase dell’Universo primordiale e dunque un esempio più tipico di galassia di quell’epoca.

A1689-zD1 viene osservata com’era durante il periodo della re-ionizzazione, quando le prime stelle portarono un’alba cosmica, illuminando per la prima volta un Universo immenso e trasparente e terminando così la stagnazione prolungata del Medioevo Cosmico. Dovrebbe apparire come un sistema appena formato, ma la galassia ha sopreso gli osservatori con la sua ricca complessità chimica e l’abbondanza di polvere interstellare.

Dopo aver confermato la distanza della galassia con il VLT,” ha dichiarato Darach Watson, “ci siamo resi conto che era già stata osservata con ALMA. Non ci aspettavamo di trovare molto, ma posso dirvi che eravamo veramente emozionati quando ci siamo resi conto che non solo ALMA l’aveva osservata, ma che c’era un chiaro segnale. Uno dei principali scopi dell’Osservatorio ALMA era di scovare le galassie nell’Universo primordiale grazie all’emissione del gas freddo e delle polvere – ed eccola lì!

Questa galassia era un infante dal punto di visto cosmico, ma ha dimostrato di essere precoce. In quest’epoca ci si aspettava una mancanza degli elementi chimici più pesanti – tutto ciò che pesa più di idrogeno e elio, definito in astronomia come metallo. Questi vengono prodotti nel ventre stellare e sparsi in giro quando la stella esplode o comunque termina la propria vita. Questo processo deve essere ripetuto per molte generazioni stellari per produrre un’abbondanza significativa di elementi più pesanti come carbonio, ossigeno e azoto.

Sorprendentemente, la galassia A1689-zD1 sembrava emettere tanta radiazione nell’infrarosso lontano [3], indicando che aveva già prodotto molte delle sue stelle e una quantità notevole di metalli e non solo conteneva polvere, ma aveva anche un rapporto tra gas e polvere simile a quello di galassie più mature.

Anche se l’origine esatta della polvere galattica rimane oscura“, spiega Darach Watson, “la nostra scoperta indica che la produzione avviene molto rapidamente, entro 500 milioni di anni dall’inizio della formazione stellare nell’Universo – un intervallo molto breve su scala cosmologica, dato che la maggior parte delle stelle vive per miliardi di anni.

Questi risultati suggeriscono che A1689-zD1 abbia formato stelle a un tasso moderato ma continuo da circa 560 milioni di anni dopo il Big Bang, oppure che ha attraversato un periodo di formazione stellare estrema e molto rapida prima di entrare in una fase di declino.

Prima di questo risultato c’era una certa preoccupazione tra gli astronomi che queste galassie lontane non sarebbero state rilevabili in questo modo, ma A1689-zD1 è stata vista in un’osservazione di ALMA molto breve.

Kirsten Knudsen (Chalmers University of Technology, Sweden), coautrice dell’articolo, aggiunge, “Questa incredibile galassia polverosa aveva fretta di completare la sua prima generazione di stelle. In futuro, ALMA potrà aiutarci a trovare più galassie come questa, e imparare cosa le rende così precoci.

Note

[1] Questa galassia era stata già notata in immagini di Hubble, e si sospettava che fosse molto distante, ma la distanza non poteva essere misurata con precisione in quel momento.

[2] Questo corrisponde a un redshift di 7,5.

[3] La lunghezza d’onda di questa radiazione viene stirata dall’espansione dell’Universo fino ad arrivare nella banda millimetrica quando la radiazione raggiunge la Terra e può quindi essere rilevata da ALMA.

Ulteriori Informazioni

il risultato è stato presentato nell’articolo “A dusty, normal galaxy in the epoch of reionization” di D. Watson et al., che verrà pubblicato online dalla rivsta Nature il 2 marzo 2015.

L’equipe è composta da D. Watson (Niels Bohr Institute, University of Copenhagen, Danimarca), L. Christensen (University of Copenhagen), K. K. Knudsen (Chalmers University of Technology, Svezia), J. Richard (CRAL, Observatoire de Lyon, Saint Genis Laval, Francia), A. Gallazzi (INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italia) e M. J. Michalowski (SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, Regno Unito).

L’ESO (European Southern Observatory, o Osservatorio Australe Europeo) è la principale organizzazione intergovernativa di Astronomia in Europa e l’osservatorio astronomico più produttivo al mondo. È sostenuto da 16 paesi: Austria, Belgio, Brasile, Danimarca, Finlandia, Francia, Germania, Italia, Paesi Bassi, Polonia, Portogallo, Regno Unito, Repubblica Ceca, Spagna, Svezia, e Svizzera, oltre al paese che ospita l’ESO, il Cile. L’ESO svolge un ambizioso programma che si concentra sulla progettazione, costruzione e gestione di potenti strumenti astronomici da terra che consentano agli astronomi di realizzare importanti scoperte scientifiche. L’ESO ha anche un ruolo di punta nel promuovere e organizzare la cooperazione nella ricerca astronomica. L’ESO gestisce tre siti osservativi unici al mondo in Cile: La Silla, Paranal e Chajnantor. Sul Paranal, l’ESO gestisce il Very Large Telescope, osservatorio astronomico d’avanguardia nella banda visibile e due telescopi per survey. VISTA, il più grande telescopio per survey al mondo, lavora nella banda infrarossa mentre il VST (VLT Survey Telescope) è il più grande telescopio progettato appositamente per produrre survey del cielo in luce visibile. L’ESO è il partner principale di ALMA, il più grande progetto astronomico esistente. E sul Cerro Armazones, vicino al Paranal, l’ESO sta costruendo l’European Extremely Large Telescope o E-ELT (significa Telescopio Europeo Estremamente Grande), un telescopio da 39 metri che diventerà “il più grande occhio del mondo rivolto al cielo“.

La traduzione dall’inglese dei comunicati stampa dell’ESO è un servizio dalla Rete di Divulgazione Scientifica dell’ESO (ESON: ESO Science Outreach Network) composta da ricercatori e divulgatori scientifici da tutti gli Stati Membri dell’ESO e altri paesi. Il nodo italiano della rete ESON è gestito da Anna Wolter.

Links

Contatti

Anna Wolter
INAF-Osservatorio Astronomico di Brera
Milano, ITALY
Tel.: +39 02 72320321
E-mail: anna.wolter@brera.inaf.it

Darach Watson
Niels Bohr Institute
University of Copenhagen, Denmark
Tel.: +45 2480 3825
E-mail: darach@dark-cosmology.dk

Kirsten K. Knudsen
Chalmers University of Technology
Onsala, Sweden
Tel.: +46 31 772 5526
Cell.: +46 709 750 956
E-mail: kirsten.knudsen@chalmers.se

Richard Hook
ESO education and Public Outreach Department
Garching bei München, Germany
Tel.: +49 89 3200 6655
Cell.: +49 151 1537 3591
E-mail: rhook@eso.org

Connect with ESO on social media

Questa è una traduzione del Comunicato Stampa dell’ESO eso1508.